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Abstract—Cognitive fault diagnosis systems differentiate from
more traditional solutions by providing online strategies to create
and update the fault-free and the faulty classes directly from
incoming data. This aspect is of paramount relevance within the
big data framework, since measurements are there immediately
processed to detect and identify the upsurge of potential faults.
The paper introduces a novel cognitive fault diagnosis framework
for processes described by nonlinear dynamic systems that
inspects changes in the existing relationships among sensors. The
proposed framework is based on an evolving clustering algorithm
that operates in the parameter space of time invariant linear
models approximating such relationships. During the operational
life, parameter vectors associated with models thought not to
belong to the nominal state are either labeled as outlier or fault.
New classes of faults, here considered to propagate to the model
parameters according to an abrupt profile, are created on-line
as they appear. At the same time, existing classes can merge,
depending on the information content carried by incoming data.

Index Terms—fault diagnosis, adaptive learning, evolving clus-
tering

I. INTRODUCTION

Fault Diagnosis Systems (FDSs) are tools designed to
detect, isolate, identify and, possibly, mitigate the occurrence
of faults affecting complex systems. FDSs have been subject
of extensive research for their relevance in real-world appli-
cations, e.g., see [1]–[4] for a comprehensive review. In their
traditional framework it is required the availability of the fault-
free nominal state and a “fault dictionary”, containing the fault
signatures. Both requests constitute a strong demand, hard to
be met in most of real-world applications.

A novel and promising cognitive approach aims at design-
ing FDSs able to automatically learn the nominal and the
faulty states online, during the operational modality. Cognitive
approaches generally rely on machine learning techniques to
configure the nominal state and create the faulty ones without
requiring any a-priori information about the fault signature or
on fault time profile (e.g., [1], [5]).

Most of existing cognitive FDSs apply the learning mecha-
nism only during the configuration phase [6]–[9], thus request-
ing availability of the fault dictionary at training time. More
in detail, [6] presents a learning methodology for incipient
failure detection based on online approximators aiming at
both inspecting variations in the system due to faults and
providing information about the detected faults in an online
manner. In [7], a learning procedure for fault accommodation
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is given, under the assumption that the process is linear.
[10] presents a scheme for online adaptive fault detection
and accommodation. There, it is requested that the nominal
fault-free state of the system is known. Differently from
previous solutions, that confine the cognitive aspect solely to
the training phase (hence not allowing the FDS to improve
the fault dictionary during the operational life), [1] suggests
the use of an unsupervised “clustering-labeling” method to
automatically assign observations either to the nominal or
the faulty class. Unfortunately, no technical details about the
implementation of the solution are given.

There is a large literature addressing the design of cognitive
FDSs for specific applications [8], [9], [11]–[20], with cog-
nitive mechanisms mostly applied during the training phase
of the FDS. For example, [9] presents a supervised method
for fault classification which exploits a recursive learning of
a radial basis function network in chemical processes. [8]
suggests a cluster-labeling approach based on Self Organizing
Maps for fault diagnosis applied to a quality inspection of tape
deck chassis. [11] describes a FDS specifically designed for
fault isolation in power transformers based on evolving neural
networks. In [12], the authors propose an intelligent FDS for
electric motors based on ART-Kohonen Neural Networks: new
faults can be included in the dictionary thanks to the design of
a case-based reasoning learning system. Several FDSs based
on fuzzy neural networks have been presented in the literature
[13]–[20], mainly addressing specific applications (e.g., bear-
ing [14], induction motors [15], transformers [16], [17], marine
propulsion engines [18], gearboxes [19], circuit transmission
[20]), while [13] suggests a fault identification technique
based on the joint use of a fuzzy logic and feedforward
neural networks. All presented methods are either application
specific or request availability of the fault dictionary, strong
assumptions that we relax in the sequel.

More in detail, the paper presents a cognitive FDS working
in the parameter space of Linear Time-Invariant (LTI) models
approximating the investigated process dynamics over time.
The proposed FDS, which extends the solution presented in
[21], relies on a novel evolving-clustering algorithm able to
learn the nominal state of the process during an initial training
phase and create, update and maintain the fault dictionary
automatically during the operational life. During the training
phase, the cognitive FDS characterizes the nominal fault-free
state and, in the following operational phase, assesses approx-
imating models by labeling them as fault-free, instances of a
new faulty class or outliers. A sound theoretical framework
justifies the use of approximating linear models to detect
changes.
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The main contributions of the paper can be summarized as
proposing:

a) the design of an evolving FDS based on an adaptive clus-
tering algorithm working in the space of approximating
model parameters, able to characterize faults whose effect
induce an abrupt change in the model parameters;

b) the theoretical justification for the use of a sequence
of LTI models approximating the (possibly) nonlinear
dynamic system within a fault diagnosis framework;

c) an evolving-clustering algorithm that takes advantage
of temporal and spatial dependencies of the estimated
parameters, whereas clustering solutions present in the
literature usually consider only the spatial aspect e.g.,
[22]–[25].

The structure of the paper is as follows. Section II reviews
the theoretical framework justifying the use of LTI models
as building blocks to construct the cognitive FDS. Section
III introduces the proposed cognitive FDS and Section IV
details the aspects related to the on-line creation of the fault
dictionary. Experimental results on both synthetic and real
datasets are presented and discussed in Section V. Concluding
remarks are finally given in Section VI.

II. PROBLEM FORMULATION

In the following, we consider a time invariant dynamic
system whose model description is unavailable and a sensor
network acquiring scalar measurements - or datastreams - from
the system. Selection of the most appropriate placement for
the sensors is outside the scope of this paper (the interested
reader can refer to [26]–[29] for a comprehensive investigation
of the displacement problem). We assume that changes in the
system can be detected by inspecting changes in the functional
relationships among sensor data. Each relationship between
two generic sensors is described as presented in the sequel
and the final decision about the change detection is taken at
the network level, by relying on the framework proposed in
[30].

In the following, each sensor-to-sensor relationship is mod-
eled as a single time invariant process P (extension to rela-
tionships described by a finite set of non-overlapping processes
{P1, . . . ,Pψ} is immediate) and is approximated with a LTI
predictive model belonging to a family M parametrised in
θ ∈ DM, DM ⊂ Rp being a compact C1 manifold. MISO lin-
ear predictive models [31], Extreme Learning Machines [32],
Reservoir Computing Networks [33] are valuable instances for
M. In this paper, we opt for linear one-step-ahead predictive
models in the form:

ŷ(t|θ) = f (t, θ, u(t), . . . , u(t− τu), y(t− 1), . . . , y(t− τy))

∀t ∈ N

where f(·) ∈ R is the approximating function in predictive
form [34], e.g., ARX, ARMAX, u(t) ∈ Rm and y(t) ∈ R
are the model input and output at time t, respectively, and τu
and τy are the orders of the input and output, respectively.
Given a training sequence composed of N couples ZN =

{(u(t), y(t))}Nt=1 and a quadratic loss function, we define the
structural risk [34] to be:

WN (θ) =
1

N

N∑
t=1

E(u,y)

[
ε2(t, θ)

]
and the empirical risk as:

VN (θ) =
1

N

N∑
t=1

ε2(t, θ),

where ε(t, θ) = y(t)− ŷ(t|θ) is the prediction error at time t.
The optimal parameter θo ∈ DM is defined as

θo = arg min
θ∈DM

[
lim

N→+∞
WN (θ)

]
.

An estimate θ̂ ∈ DM of θo can be obtained by minimizing
the empirical risk:

θ̂ = arg min
θ∈DM

VN (θ). (1)

By relying on the theoretical framework developed by Ljung
[34], [35], under the mild hypotheses that recent past data
suffice to generate accurate approximations of u(t) and y(t),
that f(·) is three time differentiable with respect to θ, and
satisfies Lipschitz conditions, and that the structural risk is a
convex function in DM, minimization of WN (θ) provides a
unique point θo such that:

lim
N→∞

θ̂ = θo w.p. 1

and
lim
N→∞

√
NΣ

− 1
2

N (θ̂ − θo) ∼ N (0, Ip) (2)

where

ΣN = [W ′′N (θo)]
−1
UN [W ′′N (θo)]

−1
,

UN = NE
[
V ′N (θo)V ′N (θo)T

]
and Ip is the identity matrix of order p.

The above result assures that, given a sufficiently large
N , the estimated parameter vector θ̂ follows a multivariate
Gaussian distribution with mean θo and covariance matrix ΣN .
Interestingly, the results presented in Sec. II contemplate the
situation where P /∈M i.e., a model bias ||M(θo)−P|| 6= 0
is present. This justifies the use of LTI models even when the
dynamic system under investigation is non-linear. According
to (2), estimated parameters θ̂ follow a multivariate Gaussian
distribution both approximating linear and nonlinear systems,
provided that a sufficiently large dataset is available. We
emphasize that, in what follows, we are not interested in
providing a high approximation accuracy, since LTI models
are not used for prediction purposes (where nonlinearities
in the system might induce a high prediction error) but for
fault diagnosis ones. Parameter vectors are the features to be
used for fault diagnosis and, since a change in the probability
density function of the parameter-features is associated with
structural changes in the process generating the data (and non-
linearity does not introduce structural changes), we can design
a FDS based on an evolving-clustering algorithm operating in
the parameter space.
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Although the non-linearity aspect is contemplated by the
theory, we might experience numerical problems in correspon-
dence with an ill conditioned Hessian W ′′N , e.g., following
highly correlated inputs. However, we must comment that if
W ′′N degenerates in rank then, given the linearity assumption
for the considered approximation model, we should simply
remove the linear dependent variables. In the case we wish
to keep them for the (small) innovation they provide, a
Levenberg-Marquardt correction W ′′N + δIp (δ being a small
positive scalar) should be introduced to grant a definite positive
Hessian.

III. COGNITIVE FDS
The FDS relies on an initial training phase needed to char-

acterize the nominal state Ψ by exploiting a fault-free training
sequence ZM = {(u(t), y(t))}Mt=1. ZM is then windowed into
non-overlapping batches of length N , each of which used to
provide a parameter vector estimate θ̂. The outcome is the
sequence ΘL = (θ̂1 . . . θ̂i . . . θ̂L), L = M/N .

The proposed cognitive FDS is given in Alg. 1. From results
delineated in Sec. II parameter vectors in ΘL are distributed
according to the Gaussian distribution, provided that N is
large enough, even though the system is non-linear. Thanks
to Eq. 2 the nominal state Ψ can be described as a Gaussian
cluster composed by equivalent models (each cluster point
is a model), whose mean vector θ̄Ψ and covariance matrix
SΨ can be estimated on ΘL (Line 1). For cognitive diagnosis
purposes we assign to the nominal state also the number nΨ

of parameter vectors used to estimate θ̄Ψ and SΨ and the last
time instant tΨ for which a θ̂i was associated to the nominal
state Ψ. At the end of the training phase nΨ = L and tΨ = L
(Line 2). The extension to multi-class nominal states, e.g.,
representing different regimes of P , would require considering
a set of Gaussian clusters for Ψ.

During the operational life, the proposed FDS estimates pa-
rameter vectors from incoming not-overlapping N -sample data
windows. The corresponding θ̂is are then either associated to
the nominal state Ψ or a generic j-th faulty one Φj present
in the fault dictionary Φ = {Φ1, . . . ,Φφ} (φ represents the
number of current fault classes in the fault dictionary). If the
assignment cannot be granted according to a given confidence
level the parameter vector is currently considered to be an
outlier and moved to the outlier set O.

At the beginning, both the fault dictionary and the outlier set
are empty (Figure 1a) and are populated during the operational
phase, as data come in. The outlier set is regularly inspected to
determine whether a new state Φφ+1 has been there contained
and needs to be generated (Figure 1b). If a parameter vector
cannot be associated to either the nominal state or one of
the faulty states according to the given confidence level, it is
considered an outlier and moved to the outlier set O (e.g., see
the asterisks near the ellipse in the upper-right side of Figure
1d). Similarly, other “housekeeping” operations are executed
on the existing structures (outlier and faulty sets), e.g., leading
to the merge of two faulty states, whenever appropriate.

Details about the cognitive FDS algorithm are given in the
sequel, while the creation of the fault set deserves a deeper
discussion (Section IV).

θ1

θ2

(a) The nominal state (crosses) is
characterized during the training
phase

θ1

θ2

(b) The number of outliers (asterisks)
is increasing but no faults are identi-
fied yet

θ1

θ2

(c) As soon as enough confidence is
gathered for the presence of a new
faulty state, a new cluster is created
(circles) and instances added to it

θ1

θ2

(d) When a different fault is identified
(dots), it is added to the fault dictio-
nary.

Fig. 1. Cognitive FDS: an example

Here, we assume that a fault affecting θo abruptly moves
the process from a stationary state to a new stationary one
(abrupt fault). A faulty state Φj is hence characterized by a
mean vector θ̄Φj and a covariance matrix SΦj . The FDS stores
the number nΦj of vectors used to estimate θ̄Φj and SΦj and
the latest time instant tΦj where θ̂i was associated to Φj .

The distance between a parameter vector θ̂i and the center
of a cluster can be computed by means of the Mahalanobis
distance:

m(θ̂i,Υ) = (θ̄Υ − θ̂i)TS−1
Υ (θ̄Υ − θ̂i).

where Υ ∈ {Ψ,Φ1, . . . ,Φφ}. Since Ψ and Φj ∈ Φ are Gaus-
sian clusters, a neighbourhood centered in θ̄Υ can be induced
by containing those θ̂is belonging to Υ with probability 1−αs
[36], where αs is a given confidence level. More specifically,
the spatial neighbourhood is composed by those θs for which:

nΥ(nΥ − p)
p(n2

Υ − 1)
m(θ,Υ) ≤ Fp,nΥ−p,αs (3)

hold. Fp,nΥ−p,αs is the Fisher’s distribution quantile of order
1 − αs of parameters p and nΥ − p. Similarly, a neighbour-
hood is assigned to each cluster Υ ∈ {Ψ,Φ1, . . . ,Φφ} and
constitutes the core of the fault identification phase of the FDS
(Lines 6 and 14). The FDS algorithm also contemplates the
case of θ̂i satisfying Eq. 3 for multiple clusters. In this case,
θ̂i is associated to the cluster Υ∗ (either nominal or faulty,
Lines 7 and 15) minimizing:

Υ∗ = min
Υ∈{Ψ,Φ1,...,Φφ}

nΥ(nΥ − p)
p(n2

Υ − 1)
m(θ̂i,Υ). (4)
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In other words θ̂i is assigned to the nearest cluster, provided
that confidence αs is attained. Once Υ∗ has been determined,
we set tΥ∗ = i (Lines 12 and 34). If θ̂i cannot be associated
either to Ψ, or to {Φ1, . . . ,Φφ}, it is considered to be an
outlier and inserted in O (Line 36).

Algorithm 1: FDS Evolving Clustering Algorithm

1 Compute mean θ̄Ψ and covariance matrix SΨ for the
nominal state cluster ;

2 Set nΨ = L and tΨ = L ;
3 Set Φ = ∅ (φ = 0) and O = ∅;
4 Set αs, ηt;
5 while A new θ̂i is available do
6 if Eq. 3 holds for at least one Ψj ∈ Ψ then
7 Select Ψ∗ minimizing Eq. 4 ;
8 Associate θ̂i to Ψ∗ ;
9 if |tΨ − i| ≤ ηt then

10 Update Ψ as in Eq. 6-8 ;
11 end
12 tΨ∗ ← i ;
13 else
14 if φ > 0 and Eq. 3 holds for at least one Φj ∈ Φ

then
15 Select Φ∗ minimizing Eq. 4 ;
16 Associate θ̂i to Φ∗ ;
17 if |tΦ∗ − i| ≤ ηt then
18 Update Φ∗ as in Eq. 6-8 ;
19 for θ̂h ∈ O do
20 if Eq. 3 holds for Φ∗ then
21 Remove θ̂h from outlier set O ;
22 Associate θ̂h to Φ∗ ;
23 if |t∗Φ − h| ≤ ηt then
24 Update Φ∗ as in Eq. 6-8 ;
25 end
26 end
27 end
28 for Φj ∈ Φ,Φ 6= Φ∗ do
29 if Eq. 9, 10 hold for Φ∗, Φj then
30 Merge Φ∗, Φj as in Eq. 11-14 ;
31 end
32 end
33 end
34 tΦ∗ ← i ;
35 else
36 Insert θ̂i in O ;
37 Create Ō according to Alg. 2 ;
38 if Ō 6= ∅ then
39 φ← φ+ 1 ;
40 Create Φφ using θ̂k ∈ Ō ;
41 end
42 end
43 end
44 end

The algorithm, after taking into account the “spatial” local-
ity between parameter vectors, analyzes the “temporal” one,

by evaluating to which level recent θ̂s have been associated to
Υ∗ (Lines 9 and 17), i.e.,

|nΥ∗ − i| ≤ ηt (5)

where ηt ∈ N is a temporal threshold (when ηt = 1 the FDS
verifies if two consecutive time vectors θ̂i and θ̂i−1 have been
assigned to the same cluster). This operation is important since
we expect models built over time to be temporally dependent.

If θ̂i satisfies both the spatial (Eq. 3) and the temporal (Eq.
5) membership conditions, for cluster Υ∗, it is inserted in there
and its statistics are updated, since a new instance has been
received (Lines 10, 18):

θ̄Υ∗ ←
nΥ∗

nΥ∗ + 1
θ̄Υ∗ +

1

nΥ∗ + 1
θ̂i (6)

SΥ∗ ←
nΥ∗ − 1

nΥ∗
SΥ∗ +

nΥ∗ + 1

n2
Υ∗

(θ̂i − θ̄Υ∗)(θ̂i − θ̄Υ∗)
T (7)

nΥ∗ ← nΥ∗ + 1. (8)

The aforementioned procedure might update cluster Υj so
that it partly overlaps with another one Υk. The algorithm
handles the situation with a cluster merging procedure (Lines
28-30). The union of clusters Υj and Υk is performed if the
following two conditions are jointly satisfied,

nΥj (nΥknΥj − nΥk − p+ 1)

(nΥk + 1)(nΥj − 1)p
m(θ̄Υj ,Υk)

≤ Fp,nΥk
nΥj
−nΥk

−p+1,αm2
(9)

nΥk(nΥjnΥk − nΥj − p+ 1)

(nΥj + 1)(nΥk − 1)p
m(θ̄Υk ,Υj)

≤ Fp,nΥj
nΥk
−nΥj

−p+1,αm2
, (10)

i.e., if the cluster means θ̄Υj , θ̄Υk have probability greater than
1 − αm to belong (to be drawn from) each other clusters.
In Eq. 9 and Eq. 10, Fp,nΥk

nΥj
−nΥk

−p+1,αm2
is the Fisher’s

distribution quantile of order 1−αm/2, with parameters p and
nΥknΥj−nΥk−p+1. Approximated results for the confidence
αm follow from the Bonferroni correction for multiple tests.
If the above conditions are satisfied, the FDS merges the two
clusters Υj and Υk to generate cluster Υ′ defined as

θ̄Υ′ ←
nΥj

nΥj + nΥk

θ̄Υj +
nΥk

nΥj + nΥk

θ̄Υk ; (11)

SΥ′ ← SΥj + SΥk +
nΥjnΥk

nΥj + nΥk

(θ̄Υj − θ̄Υk)(θ̄Υj − θ̄Υk)T ;

(12)
nΥ′ ← nΥj + nΥk ; (13)
tΥ′ ← max{tΥj , tΥk}. (14)

The exact computation of the update for the covariance matrix
is performed as in [37].

After a cluster update or the merge of two clusters, the
proposed FDS checks if parameter vectors in the outlier set
O can now be associated either to the nominal state or one of
the faulty ones (Lines 19-24).
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IV. ON-LINE CHARACTERIZATION OF THE FAULT
DICTIONARY

We addressed so far the procedure allowing the insertion of
the parameter vectors in the nominal and faulty clusters and the
merging of two faulty clusters. The remaining θ̂i are collected
in the outlier set O, where further inspection is performed
during the operational phase, to verify whether a new faulty
state must be created or not.

With reference to Alg. 2, a new cluster needs to be created
depending on the outcome of the Kolmogorov-Smirnov (KS)
test (Line 4). The test compares the empirical Cumulative
Distribution Function (CDF) of all the θ̂s estimated by the
FDS during both the training and the operational phases and
the CDF induced by considering the estimated nominal state
Ψ and faults {Φ1, . . . ,Φφ}. If the distribution of the θ̂s is no
more coherent with the current set of clusters, a new cluster
must be created and a new fault class inserted in Φ. More in
detail, the test is designed as:

H0 : F̂ = FΓ vs. H1 : F̂ 6= FΓ

where F̂ is the empirical CDF of all the θ̂s and FΓ is the
distribution induced by Gaussian clusters Γ = {Ψ,Φ1 . . .Φφ}.
The KS test statistics takes into account the maximum distance
between the two CDFs

Dp = max
0≤α≤1

|F̂ (Bα)− FΓ(Bα)|,

where Bα is the region in the parameter space such that
FΓ(Bα) = α (see [38] for further details). As stated in [38],
Dp has the same distribution of the monodimensional KS
distribution, so, for the KS-test, we can compare it with the
asymptotic form of the KS distribution K [39], [40]. Given a
confidence level αc, the critical region of the KS test (i.e., for
rejecting the null hypothesis H0) is:

Dp > Kαc (15)

where Kαc is the quantile of order 1 − αc of the monodi-
mensional K distribution. The proposed statistical test suffers
from the curse of dimensionality, i.e., it needs an exponentially
increasing number of samples to be effective as the parameter
vector dimension p increases. Therefore, if needed, we suggest
to apply a dimensionality reduction method to the parameter
vectors θ̂ ∈ O, e.g., based on Principal Component Analysis
(PCA) [36] or Random Projection (RP) method [41].

Once the KS-test provides enough confidence to claim that
a new cluster must be generated from the outlier set (i.e.,
hypothesis H0 is rejected), suitable instances are removed
from O and the new cluster is created. We assume the
availability of a supervisor that is able to label new faulty
clusters, e.g., by providing the type of encountered fault. This
allows us for creating online the fault dictionary. On the
contrary, when the hypothesis H0 is not rejected, Alg. 2 returns
an empty set (Line 32).

It is worth noting that the Mahalanobis distance cannot be
considered to measure parameter vector proximities in O, since
the distribution of elements in the outlier set is unknown (i.e.,
we cannot assume that θ̂s ∈ O are Gaussian distributed as they

are not). To address this issue we defined the spatial-temporal
norm on θ̂h, θ̂j ∈ O, inspired by the metric suggested in [42]:

||θ̂h − θ̂j ||2λ = λ
||θ̂h − θ̂j ||2

2p
+ (1− λ)

|h− j|
i

where || · || is the euclidean norm, i is the last batch of
data considered and λ ∈ [0, 1] is a penalty factor balancing
the spatial locality and the temporal one. A normalization
procedure is required so that both the spatial and temporal
components of the norm are constrained to the [0, 1] interval.
The FDS algorithm adopts the online normalization procedure
described in [43].

To select parameter vectors for the new clusters, we adopted
the Mountain Method [44]–[46], which identifies the density
center for the θ̂s ∈ O (Lines 7-12). Finally, this algorithm
estimates the density as:

ΩRMM (cj , θ̂h; r) = exp

(
−||θ̂h − cj ||

2
λ

2r2

)
where cj ∈ Rp is a center and r is an influence radius
parameters. The algorithm iteratively approximates:

c∗ = max
c

∑
θ̂h∈O

ΩRMM (c, θ̂h, r).

The potential function ΩRMM is robust to outliers (see [46]
for a formal proof) and, since it decreases slowly when
||θ̂h − cj ||λ < r and fast if ||θ̂h − cj ||λ > r, it defines a
neighborhood around each class center cj . For the purpose of
the cluster creation a center will be initialized for each of the
parameter vectors θ̂hs ∈ O. As described in [44], ηi of Alg.
2 represents both a tolerance threshold for the convergence
of the iterative procedure to identify the cluster center and
the maximum error of the optimization procedure. As one
might imagine the method is rather sensitive to r, which
highly influences the clustering results. Here, we suggested
three different heuristics to identify a suitable value for the
radius r:
• power estimate using correlation [46];
• median distance criterion [45];
• maximum edge length of minimum spanning tree under

the normal distribution hypothesis [47].
At the end of the mountain method each parameter vector
is associated with a set Os (Lines 14-15) and Õ, the set
characterized by the largest cardinality, is selected as a new
candidate cluster.

To identify the cluster shape of Õ (we do not have a priori
information about the covariance matrix of the novel cluster),
a Minimum Covariance Determinant search method [48] is
executed (Lines 16-29), i.e., a subset of elements Ō ⊆ Õ
is selected s.t. the determinant of the parameter covariance
is minimal. This method can be applied when the number
of samples in Õ ≥ p. When this condition is satisfied (Line
16), a new cluster is created: the mean and the covariance
of the parameter vectors in Ō are computed, nΦφ+1

= |Ō|,
tΦφ+1

= maxθ̂h∈Ō h and the algorithm returns Ō (Line 27).
Otherwise, when Õ < p, the algorithm returns the empty set
∅ (Line 29).
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Note that the algorithm requires at least nΥ = p + 1
parameter vectors to create a cluster. More parameter vectors
would allow a better characterization of the cluster itself since
the variance of the estimation of the mean and the covariance
matrix scales asymptotically as 1

nΥ
. Moreover, as time passes,

more and more parameter vectors are inserted into the outlier
set. To reduce as much as possible the creation of false classes
we should consider an oblivion coefficient on the parameter
vectors in the outlier set or mechanisms to discard the oldest
ones (e.g., by setting a maximum value on the cardinality of
the outlier set and keeping the new ones). The algorithm can
be easily modified to take into account this case.

Algorithm 2: Fault cluster creation

1 Given an outlier set O
2 Set αc ∈ (0, 1), ηi;
3 Compute Dp according to Eq. 15 ;
4 if Dp > Kαc then
5 Set ch = θ̂h, ∀θ̂h ∈ O and err ≥ ηi;
6 Compute r;
7 while err ≥ ηi do
8 for j s.t, θ̂h ∈ O do
9 ĉj ← cj ;

10 cj ←
∑
θ̂h∈O ΩRMM (cj , θ̂h; r)θ̂h∑
θ̂h∈O ΩRMM (cj , θ̂h; r)

;

11 end
12 err = max

k
||ĉj − cj ||λ;

13 end
14 Associate all centers cj , ch s.t. ||cj − ch||λ ≤ 2ηi to a

set, creating the sets O1, . . . , OS ;
15 Let Õ = arg maxs∈{1,...,S} |Os|, i.e., the set with the

largest cardinality ;
16 if |Õ| ≥ p then
17 Choose randomly h = |Õ|+p+1

2 elements in Õ to
define Ō;

18 Set S∗ =
∑
θ̂k∈Ō

(θ̂k−c∗)(θ̂k−c∗)T
h−1 ;

19 while Ō 6= Ō′ do
20 Ō′ ← Ō ;
21 for θ̂h ∈ Ō do
22 d(θ̂k) = (θ̂k − c∗)(S∗)−1(θ̂k − c∗)T ;
23 end
24 Ō ← arg minO′⊆Õ,|O′|=h

∑
θ̂k∈O′ d(θ̂k);

25 S∗ ←
∑
θ̂k∈Ō

(θ̂k−c∗)(θ̂k−c∗)T
h−1 ;

26 end
27 Return Ō ;
28 else
29 Return ∅;
30 end
31 else
32 Return ∅ ;
33 end

V. EXPERIMENTAL RESULTS

The aim of this section is to evaluate the effectiveness of
the proposed cognitive FDS. As we have seen, each state of
the process (either nominal or faulty) is a cluster of parameter
vectors: creation of the right number of clusters refers to the
ability of the method to correctly identify the number of states
the process explores. Likewise, an accurate aggregation of pa-
rameter vectors coming from the same state refers to the ability
of correctly characterizing the operational state. As described
in Section I, and to the best of our knowledge, no cognitive
fault diagnosis systems able to characterize the fault dictionary
during the operational life are available in the literature. As
a consequence, to compare the performance of the FDS, we
consider algorithms designed to group unlabeled data, a task
commonly addressed by clustering methods. We consider both
off-line clustering algorithms, such as the DBScan (DBS)
[49], the Affinity Propagation (AP) [50], and the Evolving
Clustering Algorithm (ECM) [24]. DBS and AP process the
whole dataset and do not require a-priori information about
the number of clusters to be created, hence representing a
relevant reference for the proposed FDS. On the contrary,
ECM manages clusters with evolving strategies; the drawback
here is that it requires parameter Dthr, which is strictly related
to the number of clusters the algorithm will create during the
operational life (such information is obviously unknown in
real applications).

To evaluate the performance of the suggested method, we
consider the following figures of merit:
• nc: the number of created clusters. It represents the

number of states detected by the algorithm. When nc
equalizes the correct number of states the algorithm
operates well;

• r: the percentage of experiments where the algorithm
creates the correct number of clusters. Large values of r
suggest that the fault diagnosis method is able to correctly
characterize the number of process states;

• a: the accuracy in associating a parameter vector to
the correct cluster. It represents the ability to correctly
identify the state in which the process is operating;

• po: the percentage of outliers, i.e., the percentage of
parameter vectors which cannot be associated to any state.
Large values of po imply that the algorithm is not able
to associate parameter vectors to any cluster.

It is worth mentioning that the FDS requires an initial training
phase. The FDS is trained on the training set and tested on a
separate test set, while DBS, AP and ECM are applied to the
whole training + test set (but their performance are evaluated
only on the test set). Since ECM and AP do not generate
outliers, po is not provided for them.

We considered two different hierarchies of model family
M(θ):
• the auto-regressive with exogenous input ARX(na, nb)

linear model family, where na and nb are the autore-
gressive and exogenous orders, respectively. Here, the
p = na+ nb dimensional parameter vector θ ∈ Rp is:

θ = (θ1 . . . θna θna+1 . . . θna+nb);



JOURNAL OF TNNLS 7

• the Reservoir Network (RN) [51] model defined as:

x(t) = g (Wx(t− 1) +Winu(t))

ŷ(t) = θx(t)

where ŷ(t) ∈ R is the prediction value at time t ∈ N,
u(t) ∈ Rm is the input observation vector at time
t, x(t) ∈ Rp is the internal state of the network at
time t, W ∈ Rp×p is the internal weight matrix and
Win ∈ Rp×m is an input weight matrix, both randomly
chosen. g : Rp → Rp is an activation function (e.g.,
gi(·) = tanh(·), i ∈ {1, . . . , p}) and θ ∈ Rp is an output
weight vector to be learned (model parameter vector).

We considered ARX and RN model families since they
satisfy the hypotheses required by the theoretical framework
described in Section II. The structural risk is the squared error;
the Bayesian Information Criterion [52] was considered to
identify model orders. In the following, batches of N = 400
not overlapping data are considered to estimate the parameters
of the approximating models. The proposed FDS has been
developed in MATLAB and can be freely downloaded from
[53] and [54].

The performance of the proposed FDS system has been
compared with those of DBS, AP and ECM methods applied
to three different applications: a synthetic one, a simulation
of the Barcelona Water Distribution Network (BWDN) and a
real-world application related to rock collapse forecasting. On
the aforementioned applications, faults are of abrupt type as
requested by the proposed FDS. Three applications are detailed
in the sequel

A. General remarks on the FDS method

Key parameters describing the FDS algorithm are given in
Tab. I. In particular,
• the spatial confidence αs has been set to 0.03 (see Eq.

3). This parameter controls the rate of structural outliers
generated by the FDS. Large values of αs would create
more compact clusters and be sensitive to new states,
at the expenses of a larger outlier set. On the contrary,
small values of αs would reduce the number of outliers at
the expenses of a reduced sensitivity in identifying new
states;

• the temporal threshold ηt has been set to 1, meaning
that cluster statistics in Eq. 8 are updated when two
consecutive parameter vectors are inserted in the same
cluster. Larger values of ηt update the cluster statistics
with less restrictive conditions. ηt = 1 represents a
conservative choice for this parameter;

• the merging confidence αm has been set set to 0.05. It
represents the confidence of the hypothesis test designed
to assess whether two clusters need to be merged or not;

• the cluster creation confidence αc has been set to 0.1. It
represents the confidence of the KS hypothesis test, meant
to assess if a new cluster must be created by looking at
the distribution of the parameter vectors in the outlier set.

Since the FDS creates clusters with as low as p + 1 param-
eter vectors (required by the minimum covariant determinant

Spatial confidence αs = 0.03
Temporal threshold ηt = 1
Merging confidence αm = 0.05
KS-test confidence αc = 0.1

Spatial-temporal penalization λ = 0.5

Mountain method threshold ηi = 10−6

TABLE I
PARAMETERS OF THE PROPOSED FDS

procedure, see Sec. IV for details), we set the DBS parameter
minPts to p + 1 to have a fair comparison. Parameter ε of
DBS has been set by using the heuristics described in [49].
The ECM parameter Dthr was set to 0.1, as suggested in [24].

B. APP D1: Synthetic application
Synthetic data are generated according to model:

y(t) = sin (a1y(t− 1) + a2y(t− 2) + b1u(t− 1)) + d(t) (16)

where a1 = 0.1, a2 = 0.2, b1 = −0.1, d(t) ∼ N (0, 10−4).
The exogenous input follows the model:

u(t) = 0.4u(t− 1) + ε(t),

with ε(t) ∼ N (0, 1).
The length of each experiment is 60300 samples with the

first 24120 ones used to train the FDS. Faults affecting the
system have been modeled as abrupt changes in the parameters
of Eq. 16. This models the situation where a fault affecting
the system induces a change in the dynamics of the rela-
tionship between input and output. The first fault affects the
system in sample interval [24120, 36180], inducing an abrupt
change which shifts the parameters from θ = (a1 a2 b1) to
θδ = (1+δ)θ, δ being a positive scalar controlling the intensity
of the perturbation. Afterwards, the data-generating process
returns to the nominal state. Then, another fault affects the
system in sample interval [48240, 60300], inducing a change
in the parameters from θ to θδ = (1− δ)θ. As a consequence,
the total number of states for this application is three (i.e., the
nominal state and the two faulty ones). We considered different
scenarios for this application by taking into account abrupt
changes in the parameters with magnitude δ ranging from
0.01 to 0.3. For each scenario, we generated 200 experiments;
averaged results are presented in Tables II and III.

In particular, Tab. II shows the number of created clusters
nc for the considered algorithms, model hierarchies and fault
magnitudes. As expected, the ability to create the correct
number of clusters increases with the magnitude of δ (a
strong fault is easy to be identified). Interestingly, the FDS
with ARX is able to correctly create three clusters even with
very low fault magnitudes (e.g., δ = 0.015). ECM creates an
excessive number of clusters making this algorithm not useful
in this application. The reason of this behaviour resides in
the incorrect setting of Dthr [49]. Unfortunately, as explained
above, it is hard to set this parameter for fault diagnosis
purpose, since it is related to the number of clusters to be
created, which is obviously unknown a-priori. Interestingly,
both DBS and AP with ARX are able to create the correct
number of clusters, for large δ magnitudes, i.e., δ ≥ 0.05
and δ ≥ 0.3, respectively. Despite the evolving approach,
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Fault
nc

FDS ECM DBS AP

APP D1 (SYN)

ARX

δ = 0.010 1.8(0.8) 120.1(3.6) 1.0(0.1) 12.7(1.1)
δ = 0.015 3.3(0.5) 118.3(3.7) 1.0(0.2) 12.7(1.1)
δ = 0.020 3.2(0.4) 113.8(3.7) 1.1(0.4) 12.9(1.1)
δ = 0.025 3.2(0.5) 108.8(3.7) 1.8(0.7) 12.9(1.1)
δ = 0.050 3.2(0.4) 88.5(3.7) 3.0(0.2) 11.6(1.1)
δ = 0.100 3.2(0.5) 60.7(3.3) 3.0(0.0) 7.1(0.8)
δ = 0.200 3.2(0.4) 33.8(2.8) 3.0(0.0) 3.8(0.4)
δ = 0.300 3.1(0.3) 21.5(2.2) 3.0(0.0) 3.0(0.0)

RN

δ = 0.010 1.0(0.1) 89.4(20.6) 1.0(0.0) 11.2(2.0)
δ = 0.015 1.0(0.2) 90.2(21.2) 1.0(0.1) 11.0(2.0)
δ = 0.020 1.0(0.2) 88.0(22.5) 1.0(0.1) 11.2(2.1)
δ = 0.025 1.1(0.4) 90.6(22.0) 1.0(0.0) 11.1(1.9)
δ = 0.050 1.5(0.8) 88.8(22.1) 1.0(0.2) 10.9(2.0)
δ = 0.100 2.4(1.0) 84.9(18.9) 1.2(0.5) 10.1(2.2)
δ = 0.200 2.7(0.9) 68.7(22.0) 1.9(1.0) 8.1(2.9)
δ = 0.300 2.6(0.9) 52.1(23.3) 2.3(0.9) 6.6(3.1)

APP D2 (BWDN) ARX

BW1 2 38 1 4
BW2 3 57 1 6
BW3 4 47 2 4
BW4 5 59 2 6

APP D3 (RIALBA) ARX
R1 2 48 1 10
R2 3 39 1 8

TABLE II
NUMBER OF CLUSTERS CREATED FOR THE CONSIDERED APPLICATIONS. AVERAGE VALUES IS GIVEN; STANDARD DEVIATION IN BRACKETS.

the proposed FDS with ARX is more effective in creating the
correct number of clusters once compared with non-evolving
algorithms such as the DBS and the AP even for small δs.
The rationale behind this refers to the fact that the FDS is
able to simultaneously consider both temporal and spatial
dependencies among parameter vectors.

RNs provide lower performance than ARX. The reason of
this behaviour can be associated to the fact that the perfor-
mance of RNs is highly influenced by the choice of the random
network topology. In fact, training the network topology is
entirely based on nominal state samples. This leads to a RN
modeling the nominal state, but does not necessarily guarantee
the ability to identify new states during the operational life.
However, the ability to create the correct number of clusters
increases with δ and the FDS with RN is able to identify the
correct number of faults with magnitude δ ≥ 0.2.

Then, in order to evaluate the ability to correctly identify
the states where the process operates over time, we focus only
on those experiments for which the number of created clusters
is correct. Tab. III shows r, a and p0 for ARX and RNs and
fault magnitudes, when the number of clusters created by the
algorithm is correct (i.e., nc = 3 for APP D1).

As expected, the FDS improves its performance both in
terms of percentage of experiments which identified the correct
number of clusters r and in terms of the classification accuracy
a as the magnitude of the fault increases. Interestingly, when
δ < 0.015 the FDS with ARX reduces its effectiveness in the
clustering (i.e., r = 12.0% and a = 51.7%) meaning that
small fault magnitudes represent challenging situations for the
proposed approach. In our opinion, this behaviour is due to
the fact that the neighbourhood of probability 1−αs induced
by the covariance matrix ΣN includes also some faulty states

when δ ≤ 0.01.
Furthermore, the analysis of p0 allows us to evaluate the

effect of the choice of the FDS parameters on performance.
Specifically, as explained in the previous section, the parameter
αs controls the percentage of structural outliers of the FDS
and this is particularly evident by the values of po in Table III
which are in line with what expected from the theory. On the
contrary, the percentage of outliers of DBS decreases, when
the fault magnitude increases. This is reasonable since the
method does not contemplate a fixed percentage of structural
outliers.

By inspecting accuracy a, we see that the FDS with ARX
provides higher performance than the one with RN in the small
perturbation case (δ ≤ 0.025). As the magnitude δ increases,
there is no strong evidence for selecting a specific model
family. Nevertheless, the standard deviation of the accuracy of
ARX model is lower than the RN model one. This behaviour
is in line with the difficulties in selecting the RN topology
following the discussions given for Tab. II.

As expected, non evolving clustering algorithms like DBS
or AP provide higher performance than FDS when δ = 0.3.
This is reasonable since these algorithms work in an off-line
way, by analyzing the whole dataset at once. On the contrary,
the proposed FDS provides better performance than DBS and
AP with small values of δ, making it suitable to manage
subtle and not evident faults. Even in this case, the reason of
this behaviour resides in the ability of the method to exploit
temporal dependencies among parameter vectors during the
operational life (while not evolving algorithms do not exploit
time dependencies in the clustering phase). ECM was never
able to correctly identify the number of clusters, in line with
comments following Tab. II.
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Fault
FDS ECM DBS AP

r a po r a r a po r a

APP D1 (SYN)

ARX

δ = 0.010 12.0 51.7(9.3) 3.4(3.8) 0.0 N.a. 0.0 N.a. N.a. 0.0 N.a.
δ = 0.015 72.5 84.5(9.6) 2.7(2.8) 0.0 N.a. 0.0 N.a. N.a. 0.0 N.a.
δ = 0.020 82.0 95.4(3.5) 3.1(3.3) 0.0 N.a. 1.5 55.9(12.0) 6.7(2.9) 0.0 N.a.
δ = 0.025 83.5 96.5(2.8) 3.0(2.8) 0.0 N.a. 13.0 92.1(7.3) 5.6(2.4) 0.0 N.a.
δ = 0.050 82.0 96.2(3.4) 3.5(3.4) 0.0 N.a. 97.5 97.6(1.8) 2.4(1.8) 0.0 N.a.
δ = 0.100 81.5 96.7(3.1) 2.6(3.1) 0.0 N.a. 100.0 99.4(0.8) 0.6(0.8) 0.0 N.a.
δ = 0.200 86.5 96.5(2.9) 2.6(2.8) 0.0 N.a. 100.0 100.0(0.0) 0.0(0.2) 17.5 100.0(0.0)
δ = 0.300 88.0 96.8(2.8) 2.4(2.8) 0.0 N.a. 100.0 100.0(0.0) 0.0(0.0) 100.0 100.0(0.0)

RN

δ = 0.010 0.0 N.a. N.a. 0.0 N.a. 0.0 N.a. N.a. 0.0 N.a.
δ = 0.015 0.0 N.a. N.a. 0.0 N.a. 0.0 N.a. N.a. 0.0 N.a.
δ = 0.020 0.5 66.7(0.0) 1.1(0.0) 0.0 N.a. 0.0 N.a. N.a. 0.0 N.a.
δ = 0.025 3.5 63.0(23.0) 3.0(3.0) 0.0 N.a. 0.0 N.a. N.a. 0.0 N.a.
δ = 0.050 16.5 80.9(16.8) 3.7(3.4) 0.0 N.a. 1.5 97.8(1.1) 2.2(1.1) 0.0 N.a.
δ = 0.100 45.0 90.9(10.5) 3.9(4.4) 0.0 N.a. 6.5 97.9(2.6) 2.0(2.7) 0.0 N.a.
δ = 0.200 60.5 94.3(7.0) 3.4(4.6) 0.0 N.a. 38.5 98.5(3.6) 1.1(1.7) 4.0 100.0(0.0)
δ = 0.300 58.5 95.3(6.8) 3.0(3.5) 0.0 N.a. 63.5 99.3(1.5) 0.7(1.5) 25.5 100.0(0.0)

APP D2 (BWDN) ARX

BW1 100 95.5 0.0 0 N.a. 0 N.a. N.a. 0 N.a.
BW2 100 81.8 0.0 0 N.a. 0 N.a. N.a. 0 N.a.
BW3 100 81.5 0.0 0 N.a. 100 56.9 4.0 0 N.a.
BW4 100 80.5 3.4 0 N.a. 0 N.a. N.a. 0 N.a.

APP D3 (RIALBA) ARX
R1 100 90.6 3.8 0 N.a. 0 N.a. N.a. 0 N.a.
R2 100 92.5 0.0 0 N.a. 0 N.a. N.a. 0 N.a.

TABLE III
EXPERIMENTAL RESULTS FOR THE CONSIDERED APPLICATIONS. AVERAGE VALUE IS GIVEN; STANDARD DEVIATION IN BRACKETS.

We also performed a robustness analysis to evaluate the
effects of variations of the main parameters of the FDS, i.e.,
αs, αm, ηt and λ, on the considered figures of merit. In
the considered scenario APP D1, which is characterized by
a stationary process affected by abrupt changes, parameter
αs revealed to be the most sensitive one and its behaviour
is deeply investigated in the sequel. Fig. 2a and 2b show
how the figures of merit a, p0, r and nc range with αs
ranging in the interval [2.5E−3; 2.5E−1]. As expected, p0

increases with αs and this is quite obvious since we are
creating clusters that are more and more compact. For the
considered scenario, αs = 0.025 guarantees the highest value
of r. Interestingly, lower values of αs create a reduced number
of clusters, while larger ones create an excessive number of
clusters. This behaviour is evident by looking at the values of
nc in Fig. 2b. The behaviour of the classification accuracy a
is particularly interesting: small values of αs create very large
clusters, hence possibly misclassifying estimated parameters
that belong to a different state (e.g., a faulty one); on the
contrary, large values of αs create very small clusters, hence
generating many outliers (and this is evident by looking at the
behaviour of p0 when αs increases).

C. APP D2: Barcelona Water Distribution Network

The second testbed refers to data generated from the
Barcelona Water Distribution Network (BWDN) simulator
[55]. By relying on a network of 17 tanks, 26 pumps, 35
valves, 9 external sources of the BWDN, this simulator allows
to artificially inject faults in a specific flow sensor of the
network (i.e., the iOrioles pump), by specifying the fault
signature, the fault magnitude and the fault time-horizon. Four
different scenarios have been considered:

BW1 An abrupt additive fault affecting the measurements
of the iOrioles pump is injected in sample in-
terval [9546, 17472]. The magnitude of the additive
fault is −20% of the signal dynamic (i.e., the range
between the maximum and minimum value of the
signal). The length of the dataset is 17472 samples;

BW2 A sensor degradation fault is injected in sample
interval [18282, 26208]. This fault consists in an
additive Gaussian noise with zero mean and standard
deviation equal to 30% of the signal one. The length
of the dataset is 26208 samples. The first 17472
samples are equal to the BW1 case;

BW3 A stuck-at fault is injected in sample interval
[27018, 34944]. The length of the dataset is 34944
samples. The first 26208 samples are equal to the
BW2 case;

BW4 An abrupt additive fault affecting the measurements
of the iOrioles pump is injected in sample in-
terval [35754, 43680]. The magnitude of the additive
fault is 20% of the range of the signal. The length of
the dataset is 43680 samples. The first 34944 samples
are equal to the BW3 case.

The FDS has been trained on the first 8736 samples (repre-
senting one year of observations in the BWDN simulator) in
all the four considered scenarios; as a reference model we
consider the ARX.

Results given in Tab. II are particularly interesting and
show how the proposed FDS is able to correctly identify the
number of clusters in all the four considered scenarios. All
other considered methods do not identify the correct number
of clusters (with the exception of AP in the BW3 scenario).
In line with the synthetic application experiments, AP and
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reported for the experiments where nc = 3.
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Fig. 2. Robustness analysis result for αs

DBS usually detect a smaller (1-2) and larger (4-6) number
of clusters than necessary, respectively, while ECM creates
an excessive number of clusters, i.e., from 38 to 59. These
results corroborate the ability of the proposed FDS method to
correctly characterize the states explored by the process over
time.

In Tab. III the value of r is either 0 or 100, since here we are
considering a single experiment. FDS accuracy decreases from
95.5% in BW1 to 81.8% in BW2, while there is no further
significant reduction in accuracy in the other scenarios. In
our opinion in scenario BW2, the injected degradation fault is
particularly hard to be detect, since its effect on the estimated
parameter vectors is not as evident as those induced by the
other considered faults.

D. APP D3: A monitoring system for landslide forecasting

In this application data are gathered from a monitoring
system for landslide forecasting, [56] deployed at the Towers
of Rialba site in Northern Italy. The dataset, available at [53],
consisting in 35652 samples, has been acquired in 2011, with a
sampling period of 5 minutes. This dataset, which is shown in
Figure 3, collects measurements coming from two clinometers.
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Fig. 3. APP D3: the measurements acquired from two clinometers of the
monitoring system deployed at the Towers of Rialba.

Two different scenarios have been considered:
R1 An abrupt additive fault affecting the measurements

of the clinometer, regarded as output, is injected in
sample interval [17468, 24956]. The magnitude of the
additive fault is −20% of the signal dynamics;

R2 The first 24956 samples are equal to the R1 case.
Then, a degradation fault is injected in the same
clinometer in sample interval [28164, 35652]. The
degradation fault consists in an additive Gaussian
noise with zero mean and standard deviation equal
to 30% of the signal one;

We emphasize that, to ease the comparison, R1 and R2
in APP D3 correspond to BW1 and BW2 in APP D2,
respectively. In this application, the first 14260 samples have
been used to train the FDS. The chosen model hierarchy was
ARX.

Experimental results on this application are particularly
interesting since data are coming from a real monitoring
system.

By looking at Tab. II, we see that the number of states of the
process is correctly recognized by the FDS in both scenarios
whereas other methods are never able to create the correct
number of clusters. These results are in line with APP D1-
D2: AP and ECM are creating more clusters than necessary
and DBS is creating a single cluster.

The FDS accuracy in R1 and R2, presented in Tab. III, are
similar (i.e., 90.6% in R1 and 92.5% in R2), showing that we
are able to deal effectively with multiple faults. With respect
to the BWND application, here we do not have a decrease in
performance as the degradation fault appears, suggesting that,
in this application, the effect of the degradation fault is more
easy to be perceived by the FDS.

VI. CONCLUSION

The paper presents an evolving mechanism for cognitive
fault diagnosis able to detect and cluster faults by charac-
terizing the nominal state and the fault dictionary (initially
empty) during the operational phase. The novelty of the
proposed approach resides in the evolving mechanisms and
the theoretically grounded framework that allows to work in
the space of linear approximating models, even if the system
under investigation is nonlinear. The cognitive approach allows
us to characterize the faults during the operational phase by
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introducing clusters in the parameter vector space and updating
them in an evolving manner. The experimental section shows
the effectiveness of the proposed solution once compared to
existing clustering algorithm applied to both synthetic and real
data. Results show the better ability of the proposed method
over the ones present in the literature to correctly identify the
states the process encounters over time.
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fault diagnosis system. In Artificial Neural Networks and Machine
Learning–ICANN 2012, pages 305–313. Springer, 2012.

[22] Rui Xu and Don Wunsch. Clustering, volume 10. Wiley-IEEE Press,
2008.

[23] O. Nasraoui and C. Rojas. Robust clustering for tracking noisy evolving
data streams. In Proc. 2006 SIAM Conf. on Data Mining (SDM 2006),
pages 80–99, 2006.

[24] Q. Song and N. Kasabov. Ecm-a novel on-line, evolving clustering
method and its applications. In Proc. conference on artificial neural
networks and expert systems (ANNES2001), pages 87–92. Citeseer,
2001.

[25] P.P. Angelov, P. Angelov, D.P. Filev, and N. Kasabov. Evolving
intelligent systems: methodology and applications, volume 12. Wiley-
IEEE Press, 2010.

[26] A. Rosich, R. Sarrate, V. Puig, and T. Escobet. Efficient optimal sensor
placement for model-based fdi using an incremental algorithm. In
Decision and Control, 2007 46th IEEE Conference on, pages 2590–
2595. IEEE, 2007.

[27] M. Krysander and E. Frisk. Sensor placement for fault diagnosis.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 38(6):1398–1410, 2008.

[28] Y. Ding, P. Kim, D. Ceglarek, and J. Jin. Optimal sensor distribution
for variation diagnosis in multistation assembly processes. Robotics
and Automation, IEEE Transactions on, 19(4):543–556, 2003.

[29] A. Khan and D. Ceglarek. Sensor optimization for fault diagnosis in
multi-fixture assembly systems with distributed sensing. Transactions
of American Society of Mechanical Engineers, Journal of Manufactur-
ing Science and Engineering, 122(1):215–226, 2000.

[30] C. Alippi, S. Ntalampiras, and M. Roveri. A cognitive fault diagnosis
system for distributed sensor networks. Neural Networks and Learning
Systems, IEEE Transactions on, 24(8):1213 – 1226, 2013.

[31] L. Ljung. System identification. Wiley Online Library, 1999.
[32] G.B. Huang, Q.Y. Zhu, and C.K. Siew. Extreme learning machine:

theory and applications. Neurocomputing, 70(1):489–501, 2006.
[33] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview

of reservoir computing: theory, applications and implementations. In
European Symposium on Artificial Neural Networks. Citeseer, 2007.

[34] L. Ljung and P.E. Caines. Asymptotic normality of prediction error
estimators for approximate system models. In Decision and Control
Symposium on Adaptive Processes, volume 17, pages 927–932. IEEE,
1978.

[35] L. Ljung. Convergence analysis of parametric identification methods.
Automatic Control, IEEE Transactions on, 23(5):770–783, 1978.

[36] R.A. Johnson and D.W. Wichern. Applied multivariate statistical
analysis, volume 4. Prentice hall Upper Saddle River, NJ, 2002.
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